Happy Birthday to Prof. Arima

图行天下 photophoto. cn No. 20150802118298436864

I met Prof. Arima in 1980 at the international Conference on nuclear physics at Berkeley for the first time. When he knew I was from China he was so kindly to talk to me and encourage me. He talked about the pairing at the conference but I knew not much about the pairing at that time. Later, I listened to several times of his lectures and I learned more about the pairing. Now I understand more deeply of its importance in nuclear structure and also nuclear reaction.

Studies of multi-nucleon transfer reaction with Improved QMD model

- 1) Introduction
- 2) Systematic studies of multi-nucleon transfer reactions with Improved Quantum Molecular Dynamics model
- 3) Conclusion and discussion

Zhuxia Li

China Institute of Atomic Energy

Collaborators: Kai Zhao, Ning Wang, Yinxun Zhang, Junlong Tian, Qingfeng Li, Xizhen Wu

2018 Nov. Shanghai,

Introduction

deep-inelastic reaction strong-dumped reaction different term same meaning multinucleon transfer Common understanding Multinucleon transfer reactions are of great importance

1) Important tool for studies of nuclear structure and reaction, nucleon correlation and nuclear fission

2) Important tool for producing new neutron-rich nuclei

3) Prospective approach for synthesizing SHN

"Blanc Spot" on the Nuclear Map

Systematic studies of multi-nucleon transfer reactions with ImQMD model

The quantum molecular dynamics model A-body dynamics , microscopic approach

- many-body correlation and fluctuation are included
- Large number of degrees of freedom can be considered automatically

excitation, deformation of projectile and target, neck formation, nucleon transfer, different types of separation of composite system, nucleon emission

⁸⁶Kr+⁶⁴Ni
 ¹⁵⁴Sm+¹⁶⁰Gd
 ²³⁸U+²³⁸U
 25MeV/u,
 Ecm=440MeV
 7MeV/u

The reaction mechanism evolves with the size of reaction systems

Intermediate size system ⁸⁶Kr+⁶⁴Ni at 25MeV/n

Neutron-rich

rare-earth region ¹⁵⁴Sm+¹⁶⁰Gd at Ecm=440MeV

Actinide nuclei ²³⁸U+²³⁸U at 7 MeV/n understanding the competition between fusion, elastic-inelastic , deep-inelastic and multifragmantation processes

Show the efficiency of MNT on the production of neutron-rich nuclei Z=58-76, neutron-rich reaction system

Fusion is completely forbidden due to strong Coulomb repulsion Study production of neutron-rich transuranium and light U-like Isotopes by MNT

Studies of the reaction ⁸⁶Kr+⁶⁴Ni at 25MeV/n ImQMD +GEMINI calculation

Cross sections of proton removal and neutron pick up isotopes

N. Wang , Phys.Rev.C 95,014607(2017) Exp. Data and DIT/Germini from G.A. Souliotis et.al Phys.Lett. B543,163

⁸⁶Kr+⁶⁴Ni 25MeV/n

Reaction mechanism evolves with impact parameters

Central collision: a highly excited composite system, small TKE → fusion, MNT, ternary breakup multifragmentation

MNT dominate _

Peripheral collision: Large TKE Elastic and inelastic scattering

N. Wang Phys.Rev.C 95,014607(2017)

Mass-TKE correlation

MNT in ¹⁵⁴Sm+¹⁶⁰Gd at Ecm=440MeV, production of unknown neutron-rich isotopes

no fusion, MNT dominant at small impact parameters

Nucleus-nucleus potential

PLB 760,216-241 by Ning Wang,et.al.

Primary fragments(ImQMD t=2000fm/c)

cross sections of neutron-rich new isotopes (Z=58-76) (ImQMD+GEMINI)

High efficiency!

Table 1

154Sm+160Gd at Ecm=440MeV

Production cross sections of some neutron-rich nuclei with unmeasured masses. The predicted mass excesses of these nuclei from the WS4 model [67] are also listed.

Ζ	Ν	$\sigma(\mu b)$	Mass excess (MeV)	Ζ	Ν	$\sigma(\mu b)$	Mass excess (MeV)
58	₉₄ -4p,	2n ₆₅	-59.33	68	105	975	-53.77
62	100 Op,8	<mark>8n</mark> 31	-54.52	68	106	549	-52.31
63	101 1p,9	n 256	-52.74	68	107	96	-48.81
63	102 1p,1	.On 54	-50.36	68	108	186	-46.89
64	100	1543	-59.72	68	109	100	-42.98
64	101	339	-56.29	68	110	44	-40.63
64	102	194	-54.48	69	108	316	-47.63
64	103	104	-50.62	69	109	92	-44.28
65	100	3288	-60.40	69	110	35	-42.02
65	102	806	-55.82	70	109	463	-46.71
65	103	140	-52.53	70	110	186	-44.99
65	104	161	-50.30	70	111	195	-41.38
65	105	46	-46.41	70	112	46	-39.36
66	104	469	-53.98	71	111	153	-41.77
66	105	130	-50.18	71	113	59	-36.45
66	106	117	-47.99	73	₁₀₅ 9p,	9n ₁₆₃₉	-50.32
67	105	656	-51.40	73	₁₁₆ 9p,	20n ₁₃₈	-32.46
67	106	203	-49.33	75	119 11 p	,23n 54	-27.29
67	107	145	-45.76	76	121 12 p	<mark>,25n</mark> 180	-25.08

²³⁸U+²³⁸U 7MeV/u

n, p, light charged particles

Production of transuranium isotopes

Z=94-101

Features :

Magnitude of cross sections of primary fragments does not change much ,residual fragments decreases exponentially with Z

The most probable residual fragments shift to more less neutron isotopes compared with that of primary fragments as Z increases

K.Zhao, Z.Li, N.Wang, Y.Zhang, Q.Li, Y.Wang, X.Wu, PRC **92, 024613 (2015)** *Exp.data : Phys. Rev. C 88, 054615 (2013) and references there in*

Comparison with experimental data

Production cross section of primary and residual fragments with charge Z light uranium-like fragments $\sigma(Z)$ primary and residual similar transuranium fragments residual fragments decreases exponentialy

The mass number of the most probable primary and residual fragments

Light uranium fragments Az pri. fragments is larger than residual fragments Transuranium fragments Az pri. and resi. Fragments are close

K. Zhao, Z. Li, N. Wang, Y. Zhang, Q. Li, Y. Wang, X. Wu, PRC 92, 024613 (2015) Exp.data : Phys. Rev. C 88, 054615 (2013)

Produced primary and residual fragments in ²³⁸U+²³⁸U compared with known nuclei

Key factors influencing the formation of residual fragments useful for finding best reaction system for synthesizing heavy neutron-rich transuranium isotopes

Outgoing angle distribution of residual fragments

outgoing angles (lab) of heavy transuranium residual fragments

Useful for experimental measurement

Summary and discussion

MNT reactions in three reaction systems from intermediate size nuclei to actinide nuclei are studied

- It shows the reaction mechanism evolves with reaction system size and reaction impact parameters
- The MNT reactions of neutron-rich nuclei are very efficient for producing very neutron-rich nuclei
- The key factors that influence the formation of neutron-rich transuranium nuclei are studied which will be useful for finding the best reaction systems for synthesizing extreme neutron-rich transuranium nuclei and possibly the SHN

Thanks for attention

Congratulations to Prof. Arima 88'th birthday

Introduction I: What are rare isotopes?

	GROUP		PE	ERI	OD	OIC	TA	BL	E (DF	TH	E E	EE	EME	EN	ГS			
8.	1 IA 1 1.0079	IA 1.0079			RELATIVE ATOMIC MASS (1)			Metal Semimetal			etal	http://www.ktf-split.hr/periodni/en/ 18 VIIIA 2 4.0026							
PERI	H HYDROGEN	2 11A GROUP IUPAC 2 11A 13 4 9 0122 ATOMIC NUMBER 5		G	GROUP CAS		Alkali metal Alkaline earth metal		Chalcogens element Halogens element		•	13 11A 14 IVA 15 VA 16 VIA 17 VIA							
2	Li	Be	8	YMBOL	BORON			Lanthanide Actinide	s STANI Ne	DARD STATE	gas (25 °C; 101 k Fe - solid	(Pa)	B	C		O	F	Ne	
3	11 22.990 Na	12 24.305 Mg		ELE?	MENT NAME				Ga	- liquid	Tc - synthet	lic	13 26.982 Al	14 28.086 Si	15 30.974 P	16 32.065 S	17 35.453 Cl	18 39.948 Ar	
2	SODIUM 19 39.098	MAGNESIUM 20 40.078	3 IIIB 21 44.956	4 IVB 22 47.867	5 VB 23 50.942	6 VIB 24 51.996	7 VIIB 25 54.938	8 26 55.845	9 27 58.933	10 28 58.693	11 IB 29 63.546	12 IIB 30 65.39	ALUMINIUM 31 69.723	SILICON 32 72.64	PHOSPHORUS 33 74.922	SULPHUR 34 78.96	CHLORINE 35 79.904	ARGON 36 83.80	
4	K POTASSIUM 37 85.468	Ca calcium 38 87.62	SC SCANDIUM 39 88.906	11 TITANIUM 40 91,224	V VANADIUM 41 92,906	Cr CHROMIUM 42 95.94	IVIN MANGANESE	Fe IRON 44 101.07	C0 cobalt 45_102.91	NI NICKEL 46 106.42	CU COPPER 47 107.87	Zn zinc 48 112.41	GALLIUM 49 114.82	GERMANIUM 50 118.71	AS ARSENIC	SELENIUM	BROMINE 53 126.90	KRYPTON 54 131.29	
5	Rb RUBIDIUM	Sr	Y		Nb NIOBIUM	MO	TC	RU	Rh	Pd PALLADIUM	Ag	Cd		Sn TIN	Sb	Te	I	Xe	
6	55 132.91 CS	56 137.33 Ba	57-71 La-Lu	72 178.49 Hf	73 180.95 Ta	74 183.84 W	75 186.21 Re	76 190.23 OS	77 192.22 Ir	78 195.08 Pt	79 196.97 Au	80 200.59 Hg	81 204.38 Tl	82 207.2 Pb	83 208.98 Bi	84 (209) Po	85 (210) At	86 (222) Rn	
7	CAESIUM 87 (223)	BARIUM 88 (226)	Lanthanide	HAFNIUM 104 (261)	TANTALUM 105 (262)	TUNGSTEN 106 (266)	RHENIUM 107 (264)	OSMIUM 108 (277)	IRIDIUM 109 (268)	PLATINUM 110 (281)	GOLD 111 (272)	MERCURY 112 (285)	THALLIUM	LEAD 114 (289)	BISMUTH	POLONIUM	ASTATINE	RADON	
,	FRANCIUM	RADIUM	Actinide	RUTHERFORDIUM		SEABORGIUM	BOHRIUM	HASSIUM						PIDUU MIGAUGAUAU		\		2114	
(1) Puri Rela	LANTHANIDE (1) Pure Appl. Chem., 73. No. 4, 667-683 (2001) 57 138.91 58 140.12 59 140.91 6 Relative atomic mass is shown with five 57 138.91 58 140.12 59 140.91 6					60 144.24	0 144.24 61 (145) 62 150.36 63 151.96 64 157.			64 157.25	Copyright © 1998-200 65 158.93 66 162.50 67 164.93 68 167.26 69 168.93 70					98-2003 EniG. (70 173.04	(eni@ktf-split.hr) 71 174.97		
indk	 significant gurds, For elements have no stable nuclides, the value enclosed in brackets indicates the mass number of the longest-lived isotope of the element. However three such elements (Th, Pa, and U) 			Lanthanum ACTINIDE	CERIUM	Pr PRASECOTYMIUM		PROMETHIUM	SM	EUROPIUM	GADOLINIUM	TERBIUM	Dy Dysprosium	HOLMIUM	ERBIUM	тницим	YD YTTERBIUM	LUTETIUM	
op have a characteristic terrestrial isotopic composition, and for these an atomic weight is tabulated.			89 (227) Ac	90 232.04 Th	91 231.04 Pa	92 238.03 U	93 (237) Np	94 (244) Pu	95 (243) Am	96 (247) Cm	97 (247) Bk	98 (251) Cff	99 (252) ES	100 (257) Fm	101 (258) Md	102 (259) NO	103 (262) LP		
Edit	or: Aditya Vardha	an (adivar@netl	(linx.com)	ACTINIUM	THORIUM	PROTACTINIUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMERICIUM	CURIUM	BERKELIUM	CALIFORNIUM	EINSTEINIUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM	

For more information and downloads please visit - - - > http://www.periodni.com/en/download.html

6